ERLANG

Tools

Copyright © 1997-2024 Ericsson AB. All Rights Reserved.
Tools 3.6

November 1, 2024

Copyright © 1997-2024 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

November 1, 2024

1.1 cover

1 Tools User's Guide

The Tools application contains a number of stand-alone tools, which are useful when developing Erlang programs.

cover
A coverage analysistool for Erlang.

cprof
A profiling tool that shows how many times each function is called. Uses akind of local call trace breakpoints
containing counters to achieve very low runtime performance degradation.

emacs - (erlang.el and erlang-start.el)
This package provides support for the programming language Erlang in Emacs. The package provides an
editing mode with lots of bells and whistles, compilation support, and it makesit possible for the user to start
Erlang shells that run inside Emacs.

epr of
A time profiling tool; measure how timeis used in Erlang programs. Erlang programs. Predecessor of fpr of
(see below).

fprof

Another Erlang profiler; measure how timeis used in your Erlang programs. Uses trace to file to minimize
runtime performance impact, and displays time for calling and called functions.
lent
A lock profiling tool for the Erlang runtime system.
make
A make utility for Erlang similar to UNIX make.
tags
A tool for generating Emacs TAGS files from Erlang sourcefiles.
xr ef
A cross reference tool. Can be used to check dependencies between functions, modules, applications and
releases.

1.1 cover

1.1.1 Introduction

The module cover provides a set of functions for coverage analysis of Erlang programs, counting how many times
each executable line is executed.

Coverage analysis can be used to verify test cases, making sure all relevant code is covered, and may be helpful when
looking for bottlenecks in the code.

1.1.2 Getting Started With Cover

Example

Assume that atest case for the following program should be verified:

Ericsson AB. All Rights Reserved.: Tools | 1

1.1 cover

- nmodul e(channel).
- behavi our (gen_server).

-export([start_link/0,stop/0]).
-export([alloc/0,free/1]). %client interface
-export([init/1,handle_call/3,termnate/2]). % callback functions

start_link() ->
gen_server:start_link({local, channel}, channel,[],[]).

stop() ->
gen_server: cal | (channel , stop).

WBeCient interface functions------------------------ ..

alloc() ->
gen_server: cal |l (channel , all oc).

free(Channel) ->
gen_server: cal | (channel , {free, Channel }).

986 gen_server callback functions----------------------------------_-.-._

init(_Arg) ->
{ ok, channel s()}.

handl e_cal | (stop, d i ent, Channel s) ->
{st op, normal , ok, Channel s};

handl e_cal | (all oc, i ent, Channel s) ->
{Ch, Channel s2} = all oc(Channels),
{reply, {0k, Ch}, Channel s2};

handl e_cal | ({free, Channel }, d i ent, Channel s) ->
Channel s2 = free(Channel, Channel s),
{reply, ok, Channel s2}.

t erm nat e(_Reason, Channel s) ->
ok.

WheInternal funCtions---------------moo oo

channel s() ->
[chl, ch2, ch3].

al | oc([Channel | Channel s]) ->
{Channel , Channel s};
alloc([]) ->
fal se.

free(Channel , Channel s) ->
[Channel | Channel s] .

The test case isimplemented as follows;

-nmodul e(test).
-export([s/0]).

s() ->
{ok, Pid} = channel:start_link(),
{ok, Chl} = channel:alloc(),
ok channel : free(Chl),
ok channel : stop() .

2 | Ericsson AB. All Rights Reserved.: Tools

1.1 cover

Preparation

First of all, Cover must be started. This spawns a process which owns the Cover database where all coverage data
will be stored.

1> cover:start()
{ ok, <0. 30. 0>}

To include other nodes in the coverage analysis, use st art / 1. All cover compiled modules will then be loaded on
all nodes, and data from all nodes will be summed up when analysing. For simplicity this example only involves the
current node.

Before any analysis can take place, the involved modules must be Cover compiled. This means that some extra
information is added to the module before it is compiled into a binary which then is loaded. The source file of the
moduleis not affected and no . beamfileis created.

2> cover: conpi | e_nodul e(channel).
{ ok, channel }

Each time a function in the Cover compiled module channel iscalled, information about the call will be added to
the Cover database. Run the test case:

3> test:s().
ok

Cover analysis is performed by examining the contents of the Cover database. The output is determined by two
parameters, Level and Anal ysi s. Anal ysi s is either cover age or cal | s and determines the type of the
analysis. Level iseither nodul e, functi on, cl ause, or| i ne and determines the level of the analysis.

Coverage Analysis

Analysis of type cover age isused to find out how much of the code has been executed and how much has not been
executed. Coverageisrepresented by atuple{ Cov, Not Cov}, where Cov isthe number of executablelinesthat have
been executed at least once and Not Cov isthe number of executable lines that have not been executed.

If the analysis is made on module level, the result is given for the entire module as a tuple { Modul e,
{ Cov, Not Cov}}:

4> cover: anal yse(channel , cover age, nodul e) .
{ok, {channel , {14, 1} }}

For channel , the result shows that 14 lines in the module are covered but one line is not covered.

If the analysisis made on function level, the result is given as alist of tuples{ Funct i on, { Cov, Not Cov}}, one
for each function in the module. A function is specified by its module name, function name and arity:

Ericsson AB. All Rights Reserved.: Tools | 3

1.1 cover

5> cover: anal yse(channel , cover age, function).

{ok, [{{channel ,start_link, 0}, {1, 0}},
{{channel , stop, 0}, {1, 0}},
{{channel , al | oc, 0}, {1, 0}},
{{channel , free, 1}, {1, 0}},
{{channel ,init, 1}, {1, 0}},
{{channel , handl e_cal | , 3}, {5, 0}},
{{channel , term nate, 2}, {1, 0}},
{{channel , channel s, 0}, {1, 0}},
{{channel , al |l oc, 1}, {1, 1} },
{{channel ,free, 2},{12,0}}]}

For channel , the result shows that the uncovered lineisin the function channel : al | oc/ 1.

If the analysis is made on clause level, the result is given as alist of tuples{ Cl ause, { Cov, Not Cov}}, onefor
each function clause in the module. A clauseis specified by its module name, function name, arity and position within
the function definition:

6> cover: anal yse(channel , cover age, cl ause) .

{ok, [{{channel ,start_link,0,1},{1,0}},
{{channel , stop, 0, 1}, {1, 0} },
{{channel ,al l oc, 0, 1}, {1, 0} },
{{channel ,free, 1,1}, {1, 0}},
{{channel ,init,1,1},{1,0}},
{{channel , handl e_cal | , 3, 1}, {1, 0} },
{{channel , handl e_cal | , 3, 2}, {2, 0}},
{{channel , handl e_cal | , 3, 3}, {2, 0}},
{{channel ,term nate, 2,1}, {1, 0}},
{{channel , channel s, 0, 1}, {1, 0} },
{{channel ,al l oc, 1, 1}, {1, 0} },
{{channel ,al l oc, 1, 2}, {0, 1}},
{{channel ,free, 2,1},{1,0}}]}

For channel , the result shows that the uncovered lineisin the second clause of channel : al | oc/ 1.

Finaly, if theanalysisis made on linelevel, theresult isgiven asalist of tuples{ Li ne, { Cov, Not Cov}}, onefor
each executable line in the source code. A lineis specified by its module name and line number.

7> cover: anal yse(channel , coverage, | i ne).

{ok, [{{channel , 9},{1,0}},
{{channel , 12}, {1, 0}},
{{channel , 17}, {1, 0}},
{{channel , 20}, {1, 0}},
{{channel , 25}, {1, 0}},
{{channel , 28}, {1, 0}},
{{channel , 31}, {1, 0}},
{{channel , 32}, {1, 0}},
{{channel , 35}, {1, 0}},
{{channel , 36}, {1, 0}},
{{channel , 39}, {1, 0}},
{{channel , 44}, {1, 0}},
{{channel , 47}, {1, 0}},
{{channel , 49}, {0, 1}},
{{channel , 52}, {1, 0}}]

For channel , the result shows that the uncovered line is line number 49.

4 | Ericsson AB. All Rights Reserved.: Tools

1.1 cover

Call Statistics

Analysis of type cal | s is used to find out how many times something has been called and is represented by an
integer Cal | s.

If the analysis is made on module level, the result is given as atuple { Modul e, Cal | s} . Here Cal | s isthe total
number of callsto functionsin the module:

8> cover: anal yse(channel , cal | s, nodul e) .
{ok, {channel , 12}}

For channel , the result shows that atotal of twelve calls have been made to functions in the module.

If the analysis is made on function level, the result is given as alist of tuples { Functi on, Cal | s} . HereCal | s
isthe number of calls to each function:

9> cover: anal yse(channel , cal | s, function).

{ok, [{{channel ,start_link, 0}, 1},
{{channel , st op, 0}, 1},
{{channel , al | oc, 0}, 1},
{{channel , free, 1}, 1},
{{channel ,init, 1}, 1},
{{channel , handl e_cal | , 3}, 3},
{{channel , term nate, 2}, 1},
{{channel , channel s, 0}, 1},
{{channel , al | oc, 1}, 1},
{{channel , free, 2},1}]}

For channel , the result shows that handl e_cal | / 3 is the most called function in the module (three calls). All
other functions have been called once.

If the analysisis made on clause level, the result is given as alist of tuples{ Cl ause, Cal | s} . HereCal | s isthe
number of callsto each function clause:

10> cover: anal yse(channel, cal | s, cl ause).

{ok, [{{channel ,start_Ilink,O, 1}, 1},
{{channel , stop, 0, 1}, 1},
{{channel , al | oc, 0, 1}, 1},
{{channel ,free, 1, 1}, 1},
{{channel ,init, 1,1}, 1},
{{channel , handl e_cal |, 3, 1}, 1},
{{channel , handl e_cal |, 3, 2}, 1},
{{channel , handl e_cal |, 3, 3}, 1},
{{channel ,term nate, 2, 1}, 1},
{{channel , channel s, 0, 1}, 1},
{{channel , al |l oc, 1, 1}, 1},
{{channel , al | oc, 1, 2}, 0},
{{channel ,free, 2,1}, 1}1}

For channel, the result shows that all clauses have been caled once, except the second clause of
channel : al | oc/ 1 which has not been called at al.

Finaly, if the analysisis made on line level, the result is given as a list of tuples{ Li ne, Cal | s}.HereCal | s is
the number of times each line has been executed:

Ericsson AB. All Rights Reserved.: Tools | 5

1.1 cover

11> cover: anal yse(channel ,calls,line).

{ok, [{{channel, 9}, 1},
{{channel , 12}, 1},
{{channel , 17}, 1},
{{channel , 20}, 1},
{{channel , 25}, 1},
{{channel , 28}, 1},
{{channel , 31}, 1},
{{channel , 32}, 1},
{{channel , 35}, 1},
{{channel , 36}, 1},
{{channel , 39}, 1},
{{channel , 44}, 1},
{{channel , 47}, 1},
{{channel , 49}, 0},
{{channel , 52}, 1}]

For channel , the result shows that all lines have been executed once, except line number 49 which has not been
executed at al.

Analysis to File
A linelevel calsanalysisof channel canbewrittentoafileusingcover: analysis_to file/1:

12> cover: anal yse_to_fil e(channel).
{ok, "channel . COVER. out "}

The function createsacopy of channel . er | whereit for each executable lineis specified how many timesthat line
has been executed. The output fileis called channel . COVER. out .

6 | Ericsson AB. All Rights Reserved.: Tools

1.1 cover

File generated from channel.erl by COVER 2001-05-21 at 11:16:38

R R R X R

Conclusion

- nmodul e(channel) .
- behavi our (gen_server).

-export([start_link/0,stop/0]).
-export([alloc/0,free/1]). %client interface
-export([init/1,handle_call/3,termnate/2]). % callback functions

start_link() ->
gen_server:start_link({local, channel}, channel,[],[]).

stop() ->
gen_server: cal | (channel , stop).

W8 Client interface functions------------------------------- .-

alloc() ->
gen_server: cal |l (channel, all oc).

free(Channel) ->
gen_server: cal |l (channel , {free, Channel }).

%986 gen_server callback functions---------------------------------

init(_Arg) ->
{ ok, channel s()}.

handl e_cal | (stop, i ent, Channel s) ->
{st op, normal , ok, Channel s};

handl e_cal | (all oc, i ent, Channel s) ->
{Ch, Channel s2} = all oc(Channels),
{reply, {0k, Ch}, Channel s2};

handl e_cal | ({free, Channel }, d i ent, Channel s) ->
Channel s2 = free(Channel, Channel s),
{reply, ok, Channel s2}.

t erm nat e(_Reason, Channel s) ->
ok.

WA Internal functions------------------------- -

channel s() ->
[chl, ch2, ch3].

al | oc([Channel | Channel s]) ->
{Channel , Channel s};
alloc([]) ->
fal se.

free(Channel , Channel s) ->
[Channel | Channel s] .

By looking at the results from the analyses, it can be deducted that the test case does not cover the case when al
channelsare allocated and t est . er | should be extended accordingly.
Incidentally, when the test caseis corrected abug in channel should indeed be discovered.

Ericsson AB. All Rights Reserved.: Tools | 7

1.2 cprof - The Call Count Profiler

When the Cover analysis is ready, Cover is stopped and al Cover compiled modules are unloaded. The code for
channel isnow loaded asusual from a. beamfilein the current path.

13> code: whi ch(channel).
cover _conpil ed

14> cover:stop().

ok

15> code: whi ch(channel).
"./channel . beant

1.1.3 Miscellaneous

Performance

Execution of code in Cover compiled modules is slower and more memory consuming than for regularly compiled
modules. As the Cover database contains information about each executable line in each Cover compiled module,
performance decreases proportionally to the size and number of the Cover compiled modules.

To improve performance when analysing cover resultsit is possible to do multiple callsto analyse and analyse to_file
at once. Y ou can also use the async_analyse to_file convenience function.

Executable Lines

Cover uses the concept of executable lines, which is lines of code containing an executable expression such as a
matching or a function call. A blank line or a line containing a comment, function head or pattern in acase- or
recei ve statement is not executable.

In the example below, lines number 2,4,6,8 and 11 are executable lines:

1: is_|l oaded(Modul e, Conpi |l ed) ->

2 case get _fil e(Mdul e, Conpil ed) of
3 {ok,File} ->

4: case code: whi ch(Modul e) of
5: ?TAG - >

6 {l oaded, Fi |l e};

7 _->

8: unl oaded

9: end;

10: fal se ->

11: fal se

12: end.

Code Loading Mechanism

When amoduleis Cover compiled, it isaso loaded using the normal code loading mechanism of Erlang. This means
that if a Cover compiled moduleisre-loaded during a Cover session, for exampleusing c(Modul e) , it will nolonger
be Cover compiled.

Usecover:is_conpil ed/ 1orcode: whi ch/ 1toseeif amoduleisCover compiled (and still loaded) or not.
When Cover is stopped, al Cover compiled modules are unloaded.

1.2 cprof - The Call Count Profiler

cpr of isaprofiling tool that can be used to get a picture of how often different functionsin the system are called.

cpr of uses breakpoints similar to local call trace, but containing counters, to collect profiling data. Therefore there
isno need for special compilation of any module to be profiled.

8 | Ericsson AB. All Rights Reserved.: Tools

1.2 cprof - The Call Count Profiler

cpr of presents al profiled modules in decreasing total call count order, and for each module presents all profiled
functionsalsoin decreasing call count order. A call count limit can be specified tofilter out all functionsbel ow thelimit.

Profiling is done in the following steps:

cprof:start/0..3
Starts profiling with zeroed call counters for specified functions by setting call count breakpoints on them.
Mod: Fun()
Runs the code to be profiled.
cprof : pause/0..3
Pauses the call counters for specified functions. This minimises the impact of code running in the background
or in the shell that disturbs the profiling. Call counters are automatically paused when they "hit the ceiling” of
the host machine word size. For a 32 bit host the maximum counter value is 2147483647.
cprof:anal yse/0..2
Collects call counters and computes the result.
cprof:restart/0..3
Restarts the call counters from zero for specified functions. Can be used to collect a new set of counters without
having to stop and start call count profiling.
cprof:stop/0..3
Stops profiling by removing call count breakpoints from specified functions.

Functions can be specified as either all in the system, all in one module, all arities of one function, one function, or all
functionsin all modules not yet loaded. As for now, BIFs cannot be call count traced.

The analysis result can either be for all modules, or for one module. In either case a call count limit can be given to
filter out the functionswith acall count below the limit. The all modules analysis does not contain the module cpr of
itself, it can only be analysed by specifying it as a single module to analyse.

Call count tracing is very lightweight compared to other forms of tracing since no trace message has to be generated.
Some measurements indicates performance degradations in the vicinity of 10 percent.

The following sections show some examples of profiling with cpr of . See also cprof(3).

1.2.1 Example: Background work
From the Erlang shell:

Ericsson AB. All Rights Reserved.: Tools | 9

1.2 cprof - The Call Count Profiler

1> cprof:start(), cprof:pause(). % Stop counters just after start

8492
2> cprof:anal yse().
{539,

[{shell, 155,

[{{shell, prep_check, 1}, 55},

{{shel | ,used_records, 4}, 45},

{{shel | ,used_records, 1}, 45},

{{shel | ,used_record_defs, 2}, 1},

{{shel |l ,record_defs, 2}, 1},

{{shel |, record_bi ndi ngs, 2}, 1},

{{shel |, exprs, 7}, 1},

{{shel | , expr, 4}, 1},

{{shel | , expand_records, 2}, 1},

{{shel |, check_command, 2}, 1},

{{shel |, appl y_fun, 3}, 1},

{{shell,"'-exprs/7-1c$"0/1-0-', 1}, 1},

{{shell,"'-eval _| oop/3-fun-0-',3},1}]},
%% | nf ormati on about many nodul es omtted

%WhoHere is the |last part.
{erts_internal, 2, [{{erts_internal,trace_pattern, 3},2}]},
{otp_internal, 1, [{{otp_internal, obsolete, 3},1}]},
{maps, 1, [{{maps, from |ist, 1}, 1}]},
{erl _internal,1,[{{erl_internal,bif,3},1}]}]}

3> cprof:anal yse(cprof).

{cprof, 3,[{{cprof,tr, 2}, 2}, {{cprof, pause, 0}, 1}]}

4> cprof:stop().

8586

The example showed some of the background work that the shell performs just to interpret the first command line.

What is captured in this example isthe part of the work the shell doeswhile interpreting the command line that occurs
between the actual callstocprof : start () andcprof : anal yse().

1.2.2 Example: One module
From the Erlang shell:

1> cprof:start(), Recal endar: day_of _t he_week(1896, 4, 27), cprof: pause(), R
1
2> cprof:anal yse(cal endar).
{cal endar, 9,
[{{cal endar, | ast _day_of _the_nont h1, 2}, 1},
{{cal endar, | ast _day_of _the_nonth, 2}, 1},
{{cal endar,is_| eap_year1, 1}, 1},
{{cal endar,is_| eap_year, 1}, 1},
{{cal endar, dy, 1}, 1},
{{cal endar, dm 1}, 1},
{{cal endar, df , 2}, 1},
{{cal endar, day_of _t he_week, 3}, 1},
{{cal endar, date_t o_gregori an_days, 3}, 1}]}
3> cprof:stop().
8648

The exampletellsusthat "Aktiebolaget LM Ericsson & Co" was registered on aMonday (since the return value of the
first command is 1), and that the cal endar module needed 9 function calls to calculate that.

10 | Ericsson AB. All Rights Reserved.: Tools

1.2 cprof - The Call Count Profiler

Using cpr of : anal yse() in this example also shows approximately the same background work as in the first
example.

1.2.3 Example: In the code

Write amodule:

-nmodul e(sort).
-export([do/1]).

do(N) ->
cprof:stop(),
cprof:start(),
do(N, []).

do(0, L) ->

R =lists:sort(L),
cprof : pause(),
R;
do(N, L) ->

do(N-1, [rand:uniform(256)-1 | L]).

From the Erlang shell:

Ericsson AB. All Rights Reserved.: Tools | 11

1.3 The Erlang mode for Emacs

1> c(sort).
{ok, sort}
2> rand: seed(defaul t, 42), ok.
ok.
3> sort:do(1000).
[0,0,0,1,1,1,1,2,2,3,3,4,4,4,4,5,55,6,6,6,6,7,7,7,7,7,8,8]...]
4> cprof:anal yse().
{13180,
[{lists, 6173,
[{{lists,rnerge3_1, 6}, 1045},
{{l'ists, rmerge3_2, 6}, 977},
{{lists,split_1,5}, 652},
{{l'ists, merge3_1, 6}, 579},
{{l'ists, merge3_2, 6}, 577},
{{lists, rmerge3_12_3, 6}, 511},
{{lists,split_1_1,6}, 347},
{{lists, merge3_12_3, 6}, 310},
{{l'ists, rmerge3_21_3, 6}, 282},
{{l'ists, merge3_21_3, 6}, 221},
{{l'ists, merge2_1, 4}, 154},
{{l'ists, merge2_2, 5}, 138},
{{l'ists, reverse, 2}, 106},
{{lists, rmerge2_2, 5}, 87},
{{l'ists, rmergel, 2}, 81},
{{lists, rmerge2_1, 4}, 75},
{{l'ists, mergel, 2}, 28},
{{l'i sts, keyfind, 3}, 2},
{{lists,sort,1},1}]},
{rand, 5000,
[{{rand, uni forms, 2}, 1000},
{{rand, uni form 1}, 1000},
{{rand, seed_put, 1}, 1000},
{{rand, seed_get, 0}, 1000},
{{rand, exsss_uni form 2}, 1000}]},
{erl ang, 1004,
[{{erl ang, put, 2}, 1000},
{{erl ang, trace_pattern, 3}, 2},
{{erl ang, ensure_tracer_nodul e_| oaded, 2}, 2}]},
{sort, 1001, [{{sort, do, 2}, 1001}]},
{erts_internal, 2, [{{erts_internal,trace_pattern, 3},2}]}]}
5> cprof:stop().
12625

The example shows some details of how | i st's: sort/ 1 works. It used 6173 function callsinthe modulel i st's
to complete the work.

This time, since the shell was not involved in starting and stopping cpr of , no other work was done in the system
during the profiling.

1.3 The Erlang mode for Emacs

1.3.1 Purpose

The purpose of this user guideisto introduce you to the Erlang mode for Emacs and gives some relevant background
information of the functions and features. See also Erlang mode reference manua The purpose of the Erlang mode
itself isto facilitate the developing process for the Erlang programmer.

1.3.2 Pre-requisites
Basic knowledge of Emacs and Erlang/OTP.

12 | Ericsson AB. All Rights Reserved.: Tools

1.3 The Erlang mode for Emacs

1.3.3 Elisp

There are two Elisp modulesincluded in this tool package for Emacs. Thereis erlang.el that defines the actual erlang
mode and there is erlang-start.el that makes some nice initializations.

1.3.4 Setup on UNIX

To set up the Erlang Emacs mode on a UNIX systems, edit/create thefile. emacs in the your home directory.

Below is a complete example of what should be added to a user's . enacs provided that OTP is installed in the
directory / usr/ 1 ocal /ot p :

(setq |l oad-path (cons "/usr/local/otp/lib/tools-<Tool sVer>/enacs"
| oad- pat h))

(setq erlang-root-dir "/usr/local/otp")

(setq exec-path (cons "/usr/local/otp/bin" exec-path))

(require 'erlang-start)

1.3.5 Setup on Windows

To set up the Erlang Emacs mode on a Windows systems, edit/create thefile . enacs, thelocation of the file depends
on the configuration of the system. If the HOME environment variable is set, Emacswill look for the. enacs filein
the directory indicated by the HOME variable. If HOME is not set, Emacs will ook for the. enacs filein C: \

Below is a complete example of what should be added to a user's . enacs provided that OTP is installed in the
directory C: \ Program Fi | es\ er| <Ver >:

(setq load-path (cons "C./Program Files/erl<Ver>/lib/tools-<Tool sVer>/emacs"
| oad- pat h))

(setq erlang-root-dir "C /Program Files/erl <Ver>")

(setq exec-path (cons "C:./Program Fil es/erl <Ver>/bin" exec-path))

(require 'erlang-start)

In .emacs, the slash character "/" can be used as path separator. But if you decide to use the backslash character "\",
please not that you must use double backslashes, since they are treated as escape characters by Emacs.

1.3.6 Indentation

The "Oxford Advanced Learners Dictionary of Current English” says the following about the word "indent":

"start (a line of print or writing) farther fromthe margin than the others".

The Erlang mode does, of course, provide this feature. The layout used is based on the common use of the language.
It is strongly recommended to use this feature and avoid to indent lines in a nonstandard way. Some motivations are:

» Code using the same layout is easy to read and maintain.

* Since several features of Erlang mode is based on the standard layout they might not work correctly if a
nonstandard layout is used.

The indentation features can be used to reindent large sections of a file. If some lines use nonstandard indentation
they will be reindented.

1.3.7 Editing

e Mx erl ang-node RET - Thiscommand activates the Erlang major mode for the current buffer. When this
mode is active the mode line contain the word "Erlang”.

Ericsson AB. All Rights Reserved.: Tools | 13

1.3 The Erlang mode for Emacs

When the Erlang mode is correctly installed, it is automatically activated when afile endingin. erl or. hrl is
opened in Emacs.

When afileissaved thenameinthe- nodul e() . lineischecked against the file name. Should they mismatch Emacs
can change the module specifier so that it matches the file name. By default, the user is asked before the change is
performed.

An"electric* command is a character that in addition to just inserting the character performs some type of action. For
example the";" character is typed in a situation where is ends a function clause a new function header is generated.
The electric commands are as follows:

e erlang-el ectric-comm - Insert acomma character and possibly a new indented line.

* erlang-electric-seni col on - Insert asemicolon character and possibly a prototype for the next line.

e erlang-electric-gt -"Insert a"™>"-sign and possible anew indented line.

To disableall electric commands set thevariableer | ang- el ect ri c- commands to the empty list. In short, place
thefollowing linein your . emacs-file:

(setq erlang-electric-commands '())

1.3.8 Syntax highlighting

It is possible for Emacs to use colors when displaying a buffer. By "syntax highlighting”, we mean that syntactic
components, for example keywords and function names, will be colored.

The basic idea of syntax highlighting is to make the structure of a program clearer. For example, the highlighting will
make it easier to spot simple bugs. Have not you ever written avariable in lower-case only? With syntax highlighting
avariable will colored while atoms will be shown with the normal text color.

1.3.9 Tags

Tags is a standard Emacs package used to record information about source files in large development projects. In
addition to listing the files of a project, atagsfile normally contains information about all functions and variables that
are defined. By far, the most useful command of the tags system isits ability to find the definition of functionsin any
filein the project. However the Tags system is not limited to this feature, for example, it is possible to do atext search
in al filesin aproject, or to perform a project-wide search and replace.

In order to use the Tags system afile named TAGS must be created. Thefile can be seen asadatabase over all functions,
records, and macros in all filesin the project. The TAGS file can be created using two different methods for Erlang.
Thefirst isthe standard Emacs utility "etags"', the second is by using the Erlang module t ags.

1.3.10 Etags

et ags isaprogram that is part of the Emacs distribution. It is normally executed from a command line, like a unix
shell or aDOS box.

Theet ags program of fairly modern versions of Emacs and X Emacs has native support for Erlang. To check if your
version doesinclude this support, issue the command et ags - - hel p at athe command line prompt. At the end of
the help text there is a list of supported languages. Unless Erlang is a member of thislist | suggest that you should
upgrade to a newer version of Emacs.

Asseenin the help text -- unless you have not upgraded your Emacs yet (well, what are you waiting around here for?
Off you go and upgrade!) -- et ags associate the file extensions. er| and. hr | with Erlang.

Basically, the et ags utility isran using the following form:

etags filel.erl file2. erl

Thiswill create afile named TAGS in the current directory.

14 | Ericsson AB. All Rights Reserved.: Tools

1.4 fprof - The File Trace Profiler

The et ags utility can also read alist of files from its standard input by supplying a single dash in place of the file
names. This feature is useful when a project consists of alarge number of files. The standard UNIX command f i nd
can be used to generate the list of files, e.q:

find . -name "*.[he]rl" -print | etags -
The above line will create a TAGS file covering all the Erlang source files in the current directory, and in the
subdirectories below.
Please see the GNU Emacs Manual and the etags man page for moreinfo.

1.3.11 Shell

The look and feel on an Erlang shell inside Emacs should be the same as in a normal Erlang shell. There isjust one
major difference, the cursor keys will actually move the cursor around just like in any normal Emacs buffer. The
command line history can be accessed by the following commands:

e GCup orMp (com nt-previous-input)-Movetothepreviouslineintheinput history.

e Cdown orMn (com nt-next-input)-Movetothenextlineintheinput history.

If the Erlang shell buffer would be killed the command line history is saved to afile. The command line history is
automatically retrieved when a new Erlang shell is started.

1.3.12 Compilation

The classic edit-compile-bugfix cycle for Erlang is to edit the source file in an editor, save it to a file and switch to
an Erlang shell. In the shell the compilation command is given. Should the compilation fail you have to bring out the
editor and locate the correct line.

With the Erlang editing mode the entire edit-compile-bugfix cycle can be performed without leaving Emacs. Emacs
can order Erlang to compile afile and it can parse the error messages to automatically place the point on the erroneous
lines.

1.4 fprof - The File Trace Profiler

f pr of isaprofiling tool that can be used to get a picture of how much processing time different functions consumes
and in which processes.

f pr of uses tracing with timestamps to collect profiling data. Therefore there is no need for special compilation of
any module to be profiled.

f pr of presentswall clock times from the host machine OS, with the assumption that OS scheduling will randomly
load the profiled functions in a fair way. Both own time i.e the time used by a function for its own execution, and
accumulated timei.e execution time including called functions.

Profiling is essentially donein 3 steps:

1
Tracing; to file, as mentioned in the previous paragraph.

2
Profiling; the tracefileis read and raw profile datais collected into an internal RAM storage on the node.
During this step the trace data may be dumped in text format to file or console.

3

Analysing; the raw profile datais sorted and dumped in text format either to file or console.

Since f pr of uses trace to file, the runtime performance degradation is minimized, but still far from negligible,
especialy not for programs that use the filesystem heavily by themselves. Where you place the trace file is also
important, e.g on Solaris/ t np is usually a good choice, while any NFS mounted disk isalousy choice.

Ericsson AB. All Rights Reserved.: Tools | 15

1.5 lent - The Lock Profiler

Fprof can also skip the file step and trace to atracer process of its own that does the profiling in runtime.

The following sections show some examples of how to profile with Fprof. See also the reference manual fprof(3).

1.4.1 Profiling from the source code

If you can edit and recompile the source code, it is convenient to insert fprof:trace(start) and
fprof:trace(stop) beforeand after the code to be profiled. All spawned processes are also traced. If you want
some other filenamethan the default try f prof : trace(start, "ny_fprof.trace").

Then read the trace file and create the raw profile data with fprof:profile(), or perhaps
fprof:profile(file, "ny fprof.trace") for non-default filename.

Finally create an informative table dumped on the console with f prof:anal yse(), or on file with
fprof:anal yse(dest, []),orperhapsevenf prof:anal yse([{dest, "my_fprof.analysis"},
{col s, 120}]) forawider listing on non-default filename.

See the fprof(3) manual page for more options and arguments to the functions trace, profile and anayse.

1.4.2 Profiling a function

If you have one function that does the task that you want to profile, and the function returns when the profiling should
stop, it is convenient to usef pr of : appl y(Mbdul e, Function, Args) andrelated for the tracing step.

If the tracing should continue after the function returns, for example if it is a start function that spawns processes to
be profiled, you canusef prof : appl y(M F, Args, [continue | O herOpts]).Thetracinghastobe
stopped at asuitable later timeusing f pr of : t race(st op) .

1.4.3 Immediate profiling

Itisalso possibleto trace immediately into the profiling process that createsthe raw profile data, that isto short circuit
the tracing and profiling steps so that the filesystem is not used.

Do something like this:

{ok, Tracer} = fprof:profile(start),
fprof:trace([start, {tracer, Tracer}]),
%% Code to profile

fprof:trace(stop);

This puts less load on the filesystem, but much more on the Erlang runtime system.

1.5 lcnt - The Lock Profiler

Internally in the Erlang runtime system locks are used to protect resources from being updated from multiple threads
in afatal way. Locks are necessary to ensure that the runtime system works properly but it also introduces a couple
of limitations. Lock contention and locking overhead.

With lock contention we mean when one thread locks a resource and another thread, or threads, tries to acquire the
same resource at the same time. The lock will deny the other thread access to the resource and the thread will be
blocked from continuing its execution. The second thread has to wait until the first thread has completed its access to
the resource and unlocked it. Thel cnt tool measures these lock conflicts.

Lockshave aninherent cost in execution time and memory space. It takestimeinitialize, destroy, acquiring or releasing
locks. To decrease lock contention it some times necessary to use finer grained locking strategies. This will usually
also increase the locking overhead and hence there is a tradeoff between lock contention and overhead. In general,
lock contention increases with the number of threads running concurrently. Thel cnt tool does not measure locking
overhead.

16 | Ericsson AB. All Rights Reserved.: Tools

1.5 Icnt - The Lock Profiler

1.5.1 Enabling lock-counting

For investigation of locks in the emulator we use an inter